Chen Liu 1,2,3Michael Malek 2Ivan Poon 4Lanzhou Jiang 4[ ... ]Shan Shan Kou 2,4,6,9,17,*
Author Affiliations
Abstract
1 Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
3 Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
4 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
5 Australian Research Council (ARC), Centre of Excellence in Advanced Molecular Imaging, Australia
6 Istituto Italiano di Tecnologia, Genova 16163, Italy
7 School of Physics, University of Melbourne, Victoria 3010, Australia
8 School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
9 Microvision and Microdiagnostic Group (SCI STI CHD), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
10 Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
11 Joint International Research Unit in Neurodevelopment and Child Psychiatry, CHUV, Département de Psychiatrie, Lausanne, Switzerland, Université Laval, Québec, Canada
12 Institut universitaire en santé mentale de Québec, Québec, Canada
13 Centre d’optique, photonique et laser, Department of Psychiatry and Neuroscience, Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada
14 e-mail: xcyuan@szu.edu.cn
15 e-mail: christian.depeursinge@epfl.ch
16 e-mail: Pierre.Marquet@neuro.ulaval.ca
17 e-mail: s.kou@latrobe.edu.au
We report a dual-contrast method of simultaneously measuring and visualizing the volumetric structural information in live biological samples in three-dimensional (3D) space. By introducing a direct way of deriving the 3D scattering potential of the object from the synthesized angular spectra, we obtain the quantitative subcellular morphology in refractive indices (RIs) side-by-side with its fluorescence signals. The additional contrast in RI complements the fluorescent signal, providing additional information of the targeted zones. The simultaneous dual-contrast 3D mechanism unveiled interesting information inaccessible with previous methods, as we demonstrated in the human immune cell (T cell) experiment. Further validation has been demonstrated using a Monte Carlo model.
Photonics Research
2019, 7(9): 09001042
Author Affiliations
Abstract
1 School of Engineering and Science, Victoria University, PO Box 14428,Melbourne, Victoria 8001, Australia
2 School of Physics, The University of Melbourne, Victoria 3010, Australia
3 CSIRO Materials Science & Engineering, Private Bag 33, Clayton South MDC, Victoria 3169, Australia
A finite-difference time-domain approach was used to investigate the excitation of surface plasmons of the circular sub-wavelength apertures on an optical fiber endface. This phenomenon provided the basis of a sensitive liquid refractive index sensor. The proposed sensor is compact and has the potential to be used in biomedical applications, having a sensitivity of (373 ± 16) nm per refractive index unit (RIU) as found through the variation of a reflection minimum with the wavelength.
Optical fiber surface plasmon resonance periodic array refractive index sensing finite-difference time-domain 
Photonic Sensors
2012, 2(3): 271

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!